
Cloud Adoption
for Mission-Critical
Workloads
Principles for Designing
Always On Applications

Haytham Elkhoja

REPORT

Compliments of

https://www.kyndryl.com

Haytham Elkhoja

Cloud Adoption for Mission-
Critical Workloads

Principles for Designing Always On
Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14949-9

[LSI]

Cloud Adoption for Mission-Critical Workloads
by Haytham Elkhoja

Copyright © 2023 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (https://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw
Development Editor: Melissa Potter
Production Editor: Jonathon Owen
Copyeditor: nSight, Inc.

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

June 2023: First Edition

Revision History for the First Edition
2023-06-13: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Adoption
for Mission-Critical Workloads, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Kyndryl. See our statement
of editorial independence.

https://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Introduction. v

1. Drivers and Considerations. 1
Failures, Outages, and Disasters 1
Resiliency Versus Reliability 3
Always On Mission-Critical Services 4

2. The Always On Strategy. 7
Cloud SLAs Are Often Misunderstood 7
Service-Level Objectives Versus Recovery-Time Objectives 9
End-to-End Service-Level Objectives 9
Achieving 99.999% End-to-End SLOs in the Cloud 11

3. Always On Guiding Principles. 15
Multi-Active Architectures 16
Application Reliability Patterns 23

4. Culture, Governance, and Organization. 33
Site Reliability Engineering 34
Chaos Engineering 38

Closing Words. 41

iii

1 Arul Elumalai et al., “IT as a Service: From Build to Consume,” McKinsey & Company,
September 15, 2016.

Introduction

Mission-critical applications are systems that play a fundamental
role in the operations of an organization. They are often used to per‐
form core business processes such as financial transactions, traffic
control coordination, and emergency response.

Such applications are essential, and their failure or unavailability
can have serious consequences for the business or the well-being
of the end user. These applications must be built to guarantee that
they are reliable, dependable, and able to perform their functions
and return satisfactory results in a timely manner—even in the most
challenging of circumstances.

Cloud adoption has been increasingly important for organizations,
as it gives them access to a comprehensive catalog of on-demand
and scalable services, platforms, and infrastructures without having
to invest in hardware and software. The cloud offers many advan‐
tages to help accelerate time to value and innovate in a more flexible,
agile, and efficient way (which, in turn, helps reduce costs, increase
operational efficiency, and enable businesses to respond quickly to
changing market conditions). Cloud providers like Amazon Web
Services (AWS), Google Cloud Platform (GCP), and Microsoft
Azure are revolutionizing this adoption.

Despite the fact that the majority of organizations have embraced
these platforms in one way or the other, a McKinsey & Company1

study shows that only 20% of workloads have migrated (or have

v

https://oreil.ly/4B2uy

modernized) to the cloud. This is partly because enterprises that
manage sensitive and mission-critical workloads are conscious of
the challenges and complexities when it comes to adopting the
cloud.

This report explores ways to reconcile the potential of cloud plat‐
forms with the intricate requirements of reliability for mission-
critical workloads. It provides strategies for the successful adoption
of cloud platforms and cloud-native patterns while simplifying the
end-to-end operational complexity of such workloads.

vi | Introduction

CHAPTER 1

Drivers and Considerations

End users have come to have certain expectations in terms of the
consistency and reliability of mission-critical services. Downtime,
whether planned or unplanned, can cause significant disruptions to
an organization’s operations, and even a few minutes of unavailabil‐
ity can result in substantial loss of revenue, impact the reputation
of the organization, decrease customer loyalty, and even potentially
affect the livelihood of end users.

Depending on the industry, the impact of such outages can vary
significantly. For instance, a few minutes of downtime for an online
retailer could cost them hundreds of thousands of dollars in missed
sales and, more importantly, erode customer trust—but the safety
and well-being of patients could be seriously impacted by a compa‐
rable outage for a healthcare organization.

Failures, Outages, and Disasters
Unplanned outages, typically caused by unexpected hardware or
software failures, cause significant disruptions and impact the
business. Additionally, planned outages that are conducted for
maintenance or application upgrades can also result in service
unavailability that impacts the overall user experience, the immedi‐
ate response, and the consistent operation of the service that users
come to expect.

Outages and their criticality differ. Table 1-1 shows some of the
more important ones.

1

1 Haryadi S. Gunami et al., “Why Does the Cloud Stop Computing? Lessons from
Hundreds of Service Outages,” SoCC ’16, October 2016.

2 “Uptime Institute’s 2022 Outage Analysis Finds Downtime Costs and Consequences
Worsening as Industry Efforts to Curb Outage Frequency Fall Short,” Uptime Institute,
June 8, 2022.

Table 1-1. Outage examples

Types of
outages

Examples

Human New code, misconfigurations, faulty deployments, mistyping commands, and
untested changes to production systems

Software Bugs in the code, unexpected interactions between components, and security
vulnerabilities

Distributed Timeout errors, lost messages, duplicate messages, delayed messages,
incomplete messages, and out-of-order messages; degradation of external third-
party APIs

Capacity Noisy neighbors and poorly sized systems and components that become
overwhelmed or unable to handle the demand placed on them

Networking Erroneous DNS, WAN, BGP, and other types of routing configurations and latency
timeouts

Data Data loss, data rots, corruptions, accidental deletes, and poorly orchestrated
database schema changes

Natural Earthquakes, storms, floods, heatwaves, and other disasters that can disrupt
entire regions

Cybersecurity Distributed denial-of-service (DDoS), malware infections, ransomware attacks,
and expired certificates

Energy Power distribution; mechanical and HVAC disruptions

All these types of outages are problematic because they can quickly
cascade and escalate from a small issue to a major crisis, making
it difficult for operation teams to respond to and recover from the
failure. What’s more, although it’s not always acknowledged, enter‐
prises find that the underlying reason for failures is often simply
unknown.1

The Uptime Institute’s 2022 Outage Analysis report2 indicated that
high outage rates haven’t changed significantly even with an increase
in cloud adoption and that downtime costs are actually rising: over
60% of outages cost more than $100,000, an increase from 39% in
2019, and 15% of outages cost more than $1 million, an increase
from 11% in 2019.

2 | Chapter 1: Drivers and Considerations

https://oreil.ly/wjOSC
https://oreil.ly/wjOSC
https://oreil.ly/4I2xb

Despite efforts to create resilient applications hosted on redundant
systems and supported by mechanisms that enable services to
“recover” or “failover,” recovery processes are long, tedious, and
often fraught with risk, and they result in a subpar experience for
both the organization and its users.

Faced with this reality, many organizations running critical services
are cognizant that they can’t afford the time to recover from fail‐
ures and that their online services should be continuously available,
regardless of the situation and circumstances.

Resiliency Versus Reliability
Resiliency and reliability are both important concepts in IT, and
it could be argued that resiliency is a subset of reliability. It is,
however, important to define them in order to contextualize their
different characteristics:

Resiliency
Resiliency refers to the ability of a system, process, or organiza‐
tion to quickly recover from disruptions or failures. Fundamen‐
tally, resiliency is how swiftly we can bring the operation of a
service back to its normal state.

Reliability
Reliability, on the other hand, refers to the dependability of a
system, process, or organization and its ability to consistently
perform its intended function. In essence, reliability refers
to the ability of an online service to perform its intended
function consistently and without interruption. Reliability is
closely related to robustness—specifically, a system that exhibits
robustness is more likely to be reliable, as it can provide consis‐
tent behavior-facing variations.

Another concept to consider is cyber resilience, which is pivotal
in today’s digital landscape, as it enables organizations to quickly
detect, respond to, and recover from cyber threats and attacks.
While its importance cannot be overstated, discussing cyber resil‐
ience is not within the scope of this report.

In today’s always-connected world, end users expect reliable, stable,
and seamless access to services—that is, the significance of reliability
surpasses that of resiliency. I call this Always On.

Resiliency Versus Reliability | 3

3 John Graham-Cumming, “Cloudflare Outage on July 17, 2020,” Cloudflare (blog), July
17, 2020.

Always On Mission-Critical Services
Always On refers to the ability to withstand component and applica‐
tion failures, catastrophic events, and the introduction of updates
and changes in a nondisruptive and transparent manner. Making
applications Always On (or reliable) is rapidly becoming a strategic
goal at the highest levels of organizations that seek to achieve it for
their own reasons:

Customer satisfaction
An Always On service ensures that customers can access busi‐
ness services at any time, leading to greater satisfaction and
loyalty.

Revenue generation
An Always On service is critical to generating revenue since any
downtime can result in lost sales and a damaged reputation.

Risk management
An Always On service can help mitigate risks associated with
cyberattacks, system failures, or other emergencies that can
impact business operations.

The reality is that many mission-critical applications typically con‐
sist of hundreds of dependencies and distributed systems, some
of which are more complex than others. The challenge is that
when mission-critical workloads are modernized to the cloud, it is
also necessary to adapt and modernize how to meet their demand‐
ing nonfunctional requirements, such as reliability, scalability, and
observability, as well as those of their dependencies.

The traditional reliance on infrastructure and platforms to address
these nonfunctional requirements is no longer the method of build‐
ing and deploying sensitive workloads. It has been demonstrated,
often publicly,3 that a cloud platform’s availability does not necessar‐
ily imply an application’s availability.

This is precisely why enterprises are still hesitant to place complete
trust in public cloud companies with critical workloads. The Uptime
Institute found that 32% of respondents would only trust certain

4 | Chapter 1: Drivers and Considerations

https://oreil.ly/ahPAp

4 Andy Lawrence, “Is Concern Over Cloud and Third-Party Outages Increasing?,”
Uptime Institute, June 8, 2022.

5 Stanton Jones, “Index Insider: Cloud Is a Forcing Function for ADM,” ISG (blog), 2023.

workloads with public clouds, while 14% do not trust the cloud with
critical loads at all.4

One of the reasons behind that lack of trust stems from failed past
cloud migrations that often involved a straightforward lift-and-shift
model from on-premises infrastructure to a “resilient cloud,” con‐
sidering this as sufficient. ISG reports that over 60% of enterprises
use lift-and-shift as one of their preferred approaches5 to move
applications to the cloud.

Often, the root cause for unsuccessful cloud adoptions is the
misconception that architectures and deployment models used on-
premises and on-cloud are analogous. On-premises resiliency is
traditionally implemented through redundant infrastructure com‐
ponents, manual configuration, complex recovery runbooks, and,
sometimes, fragile clustering intelligence. Cloud and cloud-native
reliability, in contrast, must be implemented through application-
level reliability patterns that are inherent to the cloud and to
modern software development frameworks and patterns.

This shift toward making the application equally responsible for
reliability instead of solely depending on the infrastructure’s resil‐
iency represents a major change in perspective. And while cloud
providers offer building blocks and capabilities to help architects,
developers, and site reliability engineers address these needs, a holis‐
tic approach is required that considers all aspects of the system.

What’s more, the system should be supported by an institutional
culture that prioritizes reliability at all levels of the technology stack.
This leads to an end-to-end design of the services that must con‐
sider the application, data, infrastructure, deployment, people, and
culture to effectively face all the challenges of building and running
mission-critical cloud services.

In the next chapter, I delve into the importance of considering reli‐
ability in every aspect of the cloud application architecture, deploy‐
ment method, and operation to achieve Always On.

Always On Mission-Critical Services | 5

https://oreil.ly/MFBjF
https://oreil.ly/MFBjF
https://oreil.ly/dfET8

CHAPTER 2

The Always On Strategy

Simply put, Always On mission-critical services are applications
that have been purposefully designed and deployed to fulfill the
demanding requirement of zero tolerance for recovery time (i.e.,
applications that cannot afford the time needed to recover).

Contrary to other resiliency methods presented in Figure 2-1, such
as disaster recovery and warm/standby, Always On aims to provide
zero downtime as perceived and experienced by the end user. This
means that the goal of achieving a zero downtime strategy is not
simply a technical issue but a customer-centric one.

Figure 2-1. Recovery and zero downtime strategies

Cloud SLAs Are Often Misunderstood
Cloud service-level agreements (SLAs) address only a few aspects of
the overall user experience. The confusion stems from the limited

7

scope of SLAs provided by cloud providers, which usually only
apply to the infrastructure and managed services provided “as a ser‐
vice.” And that simply isn’t enough. For example, and despite being
designed with high availability and fault tolerance in mind, cloud
Kubernetes platforms often experience failures, and enterprises have
little to no control over how quickly the service will recover.

Reliability is impacted by multiple layers that all play a role in deliv‐
ering a service. It is essential to understand the varying impact each
layer has on the overall customer experience since this is the only
metric that truly matters to the customer. The novel distinction here
is that when adopting an Always On strategy, organizations must be
concerned about the availability levels of the end-to-end business
service rather than solely on the availability of the underlying cloud
infrastructure and platform. This mindset shift has been perceived
as a potentially expensive endeavor by many organizations, which
is why it is important to measure and assess the cost of interrupted
services in contrast to the cost of ensuring continuous availability.

A simplistic way to measure this cost is to consider its impact on
revenue and reputation. For instance, an outage in the booking sys‐
tem of a major airline would not only affect direct sales and revenue
but would also attract negative publicity. On the other hand, an out‐
age to its critical internal backend systems that results in grounding
planes and disrupting hundreds of thousands of passengers would
result in flight cancellations, compensation to passengers, damage to
the airline’s reputation, regulatory measures, and potential suspen‐
sion of the supply chain necessary for the smooth operation of the
airline.

To that end, when undertaking an Always On transformation while
adopting the cloud, enterprises must establish a shared consensus
on the desired level of the reliability they aim to provide to their
customers and stakeholders. By doing so, they offer a clear frame‐
work for measuring and improving service over time.

To measure the reliability of their business services, such as booking
a flight ticket or completing an ecommerce transaction, a customer-
centric service-level objective (SLO) must be agreed upon by all par‐
ties involved. This will help provide a measurable user experience
metric and quantify the potential number of transactions lost during
an outage, which can be translated into monetary terms.

8 | Chapter 2: The Always On Strategy

https://k8s.af

Service-Level Objectives Versus
Recovery-Time Objectives
An SLO is a documented target for the level of service that a system
aims to provide to its consumers. It is often used as a measurable
goal that specifies a desired level of performance for a particular
subsystem, service, or component. Examples of SLO metrics include
uptime, API response time, and error rates.

On the other hand, a recovery-time objective (RTO), a metric used
in business continuity and IT disaster recovery strategies, is the
maximum amount of time it should take to restore a system or
service to normal operations after a disruption. RTO is an impor‐
tant metric to measure, but it does not consider the time (often
lengthy) it takes for an organization to detect, agree on, and declare
an outage. RTOs also don’t reflect whether recovery systems and
data centers have adequate operational capacity and performance to
match production.

RTOs and SLOs are related concepts, but they serve different
purposes. This report recognizes RTO as a critical component in
achieving a comprehensive SLO.

End-to-End Service-Level Objectives
While SLOs and other reliability parameters such as MTBF (mean
time between failures), MTTR (mean time to repair/recover/resolve/
respond), and MTTF (mean time to failure) are well established
in incident management, they are used to measure local resource
failures but do not trace a global end-to-end user experience. In
an Always On approach, organizations should focus instead on per‐
sonalized and customer-centric (i.e., following a customer’s journey
through an online service), transactional-level SLOs known as end-
to-end SLOs.

An end-to-end SLO measures the level of service delivered to the
end user, from the end user’s point of view, through the entire
service delivery chain. It takes into account the transactional crit‐
ical path and the entire technology stack involved in delivering
the service, including the user’s browser, internet transport, applica‐
tion, networking, compute, messaging, APIs, runtimes, third-party
dependencies, and other infrastructure components. In essence,

End-to-End Service-Level Objectives | 9

1 Cat Chu and Gang Chen, “Composite Availability: Calculating the Overall Availability
of Cloud Infrastructure,” Google Cloud (blog), November 15, 2022.

2 “Using Business Metrics to Design Resilient Azure Applications,” Microsoft Azure,
November 30, 2022.

end-to-end SLOs are composite (or nested) SLOs, meaning that they
are created by combining multiple local SLOs, allowing for a holistic
view of the business service and the customer’s experience.

End-to-end SLOs are expressed in terms of the percentage that a
business service is operational and responding properly and accu‐
rately to end users over a given period of time. This percentage is
commonly referred to as nines and is used to indicate the level of
reliability that is expected for a mission-critical service. The more
nines a service has during a month, the more reliable and available
it is. The level of nines required for a particular service will depend
on the specific needs of the business service and the criticality of the
application. The end-to-end SLOs that address reliability are shown
in Table 2-1.

Table 2-1. Service levels

End-to-
end SLO

Outage per
year

Outage per
month

Mission-critical compatibility

99% 3.65 days 7.20 hours This level of reliability is not considered acceptable for
mission-critical business services.

99.9% 8.76 hours 43.2 minutes This level of reliability is not considered acceptable for
mission-critical business services.

99.99% 52.6 minutes 4.32 minutes This level of reliability is considered good enough and
is often used as a target for mission-critical services.

99.999% 5.26 minutes 25.9 seconds This level of reliability is considered the standard of
excellence for mission-critical services and is what we
consider to be Always On.

Calculating service levels is beyond the scope of this report; how‐
ever, many1 resources2 discuss these in great length.

10 | Chapter 2: The Always On Strategy

https://oreil.ly/C15Ct
https://oreil.ly/ra8cI

While end-to-end SLOs can be valuable to guide organizations
in the development, architecture, deployment, and operation
of mission-critical workloads, organizations must be careful to
acknowledge their nuances. The frequency and impact of service
disruptions can have varying degrees of importance for an organiza‐
tion, and most metrics don’t recognize the difference.

For instance, an end-to-end SLO may not differentiate between a
single outage lasting five hours and five outages lasting one hour
each. While both present the same availability metric (in terms of
nines), they differ in reliability. Another aspect to consider is that
end-to-end SLOs may not account for variations such as peak hours
versus periods of lower activity.

End-to-end SLOs establish a beacon of guidance and a shared goal
within the enterprise. This can foster greater collaboration and
communication between business stakeholders, engineering, and IT,
enabling them to use a new architectural approach and speak a com‐
mon language. This is why ownership, roles, and responsibilities
must evolve and involve the entire enterprise to ensure that funding
is available and that culture will adapt for its implementation.

Achieving 99.999% End-to-End SLOs
in the Cloud
It is crucial then to have ongoing conversations at the highest levels
of the organization to understand and recognize the importance
of reliability during a transformation and modernization to cloud
providers. One of the differences in designing for reliability between
on-premises and cloud providers lies in the fact that Always On in
the cloud replaces high availability and disaster recovery as a single,
comprehensive, and unified strategy, rather than treating them sepa‐
rately (see Figure 2-2).

Achieving 99.999% End-to-End SLOs in the Cloud | 11

Figure 2-2. Always On: availability and reliability

Cloud providers offer distributed services around the globe and
provide multiple building blocks of reliability, resiliency, and redun‐
dancy. By leveraging these capabilities, Always On workloads can
be deployed across multiple active geographically distributed cloud
regions and isolated fault domains, which eliminates the need for
separate high availability and disaster recovery solutions.

Moving an application to the cloud as is, however, does not neces‐
sarily guarantee its reliability. It is therefore important to design
it, develop it, and deploy it in a way that considers the unique
features and capabilities of cloud providers while doing so in a
cloud-agnostic manner whenever feasible. This will also involve
making changes into how the application is operated, optimized,
and tested.

This report asserts that to design mission-critical applications in
the cloud and achieve five nines end-to-end SLOs, enterprises must
consider the following four domains:

1. Multi-active architectures as an architectural and deployment1.
model

2. Application reliability patterns as a robust programming practice2.
3. Site reliability engineering as an improved operations culture3.
4. Chaos engineering as a testing and validation method4.

12 | Chapter 2: The Always On Strategy

In Chapter 3, I cover multi-active architectures and application
reliability patterns while providing actionable guiding principles.
Additionally, I examine emerging software development patterns
and other best practices that are relevant to each domain.

In Chapter 4, I explore how to govern and foster a culture of contin‐
uous improvement and innovation to operate Always On services.
That chapter focuses on the principles of site reliability engineering
(SRE) and the benefits of adopting chaos engineering as a testing
practice to build confidence and provide evidence of a service’s
reliability.

Achieving 99.999% End-to-End SLOs in the Cloud | 13

CHAPTER 3

Always On Guiding Principles

Everything breaks.

This statement is a reminder that all systems fail and that it is
essential to plan for all types of failures to minimize their impact
and ensure continuity of service. The concept that everything will
inevitably fail and the importance of planning for that failure is a
common principle in many fields, not only IT. The idea is that by
anticipating and planning for potential problems, we can design and
build more reliable systems.

This principle is also known as designing for failure (DFF) which
involves designing and building Always On services that can detect,
tolerate, and sustain failures efficiently while transparently isolating
the affected components without any human intervention. DFF
serves as a guiding principle for decision making and execution,
helping to ensure uniformity in methods and practices. This allows
architects designing for Always On to apply this principle across
every layer of the technology stack and operational model. It also
enables a seamless and integrated approach to design, development,
and deployment throughout all the components and elements that
make up a mission-critical business service.

In the following section, I provide an overview of the cloud deploy‐
ment methods that are compatible with an Always On approach
with architectural principles that must be considered when design‐
ing and deploying mission-critical applications in the cloud, ensur‐
ing that they can make informed decisions that meet the specific
needs of their workload.

15

Multi-Active Architectures
A crucial aspect of Always On is to shift the focus from recover‐
ing from a failure to transparently bypassing it. To achieve this,
a multi-active approach is required. A multi-active architecture is
the concept of deploying active workload instances consistently and
redundantly across multiple locations. This distributes the capability
of ensuring availability across multiple location scopes and balanc‐
ing incoming traffic to process requests in parallel.

This in turn allows bypassing failures by proactively detecting fail‐
ures, redirecting traffic, and enabling services to continue function‐
ing seamlessly while failed components take the necessary time to
recover. It is important to explain the necessary distinct concepts
and technical capabilities that underpin a multi-active architecture:

• Location scopes•
• Traffic management and service parallelism•
• Transactional swimlanes and traffic affinity•
• Share nothing, stretch nothing•
• Deployment archetype•

Let’s dig into each of these in more detail.

Location Scopes
From a deployment perspective, applications must be deployed in
multiple active location scopes capable of handling incoming traffic
simultaneously. While organizations can create their own location
scopes, either logically or physically, most cloud providers offer two
established building blocks to address this: cloud regions and cloud
zones.

• Cloud regions are geographical areas where a cloud provider•
has multiple data centers (or zones) that are isolated from each
other but connected by high-speed networks.

• Cloud zones, often called availability zones, are separate data cen‐•
ters designed to provide redundancy and fault tolerance within a
single cloud region so that if one zone experiences an outage or
other issues, other zones can continue to operate normally.

16 | Chapter 3: Always On Guiding Principles

1 “Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-
EAST-1) Region,” Amazon Web Services, 2017.

2 Google Cloud Incident #19006, status dashboard, November 2019.
3 Azure Status History, root cause analyses (RCAs) of previous service issues, March

2023.

Traditionally, a region includes a minimum of three zones. This is
to supply in-region redundancy by providing infrastructure capacity
that can allow workload instances to continue to operate and support
the workload in case of zonal failures. This also helps minimize the
risk of “split-brain” scenarios by providing a quorum majority needed
for leader election and read/write majority for data consistency.

Cloud services provisioned in a region, whether it is a Kubernetes
environment, a Kafka platform, or a database as a service instance,
will typically cluster nodes in the three zones as a way to improve
availability within a single region. This approach often involves
stretching clusters across the three zones while maintaining a single
shared logical control plane.

While there are important benefits to this approach, such as simpli‐
fied management and monitoring, It is important to note that entire
cloud region failures do1 often2 occur,3 carrying significant risks that
should not be disregarded.

It is also important to exercise caution in regard to the concept
of “logical” availability zones that some cloud providers and on-
prem solutions provide, which involves grouping virtual resources
together in a logical manner to simulate the idea of physical zones.
However, because logical availability zones are software-defined
constructs and not physically separate infrastructures with distinct
resources and fault domains, I do not subscribe to this idea.

Traffic Management and Service Parallelism
Traffic management and service parallelism are techniques used
to process incoming traffic and transactions and distribute them
across instances hosted on multiple active location scopes so that
they can be processed in parallel. Incoming traffic must be balanced
across location scopes to ensure that no scope becomes overloaded,
improving scalability, performance, and reliability. This is true for
both cloud zones and cloud regions.

Multi-Active Architectures | 17

https://oreil.ly/Ph2Je
https://oreil.ly/N0LbK
https://oreil.ly/JO781

DNS-based traffic steering and Anycast routing technologies direct
incoming traffic across multiple cloud regions while zonal load bal‐
ancers distribute traffic across the different availability zones, ensur‐
ing that failure bypass is enabled on a regional level and zonal level.
It’s important to pair multiple authoritative DNS and traffic manage‐
ment providers simultaneously, such as Cloudflare, Akamai, or NS1.

By combining both approaches and technologies shown in Fig‐
ure 3-1, traffic is intelligently routed to the closest and most avail‐
able cloud region, followed by the most performant and available
cloud zone. This enables failure bypass at both regional and zonal
levels, effectively eliminating single points of failure at every ingress
point of entry. This is accomplished by continuously monitoring
network conditions, user experience, transactional performance,
and response time against real-time end-to-end SLOs to decide the
optimal location scope for each request and transaction.

Figure 3-1. Global traffic steering and zonal load balancing

These capabilities will enable self-healing mechanisms to detect and
bypass failures quickly with no human intervention. Any disruption

18 | Chapter 3: Always On Guiding Principles

or failure in one location scope can be transparently bypassed to
other locations that are still operational. Additionally, global traffic
management can help organizations achieve better resource utiliza‐
tion, reduce network congestion, and provide better fault tolerance.

Transactional Swimlanes and Location Affinity
Because business services are active and served from multiple
autonomous active cloud regions, it is important that data is stored
and requests are processed separately across these regions. Each
transaction flowing in a distinct region becomes its own swimlane
and must be able to complete its specific task or function independ‐
ently of other cloud regions. This means that traffic must not trom‐
bone (or zigzag) between regions.

Cloud architects and developers must then minimize the traffic that
is sent back and forth between services in different regions, except
for data replication and out-of-band management and monitoring
tools. This approach involves placing related services and compo‐
nents in close proximity to each other within a region.

Client requests must have location affinity, meaning they must stick
to the same location scope (region and zone) during the duration of
related sessions. If the request fails in the middle of a transaction, it
must gracefully restart in another location scope. This allows for a
consistent and smooth user experience and transactional awareness,
and it facilitates the accurate tracking of transactions based on their
respective locations.

By logging transaction location scopes and incorporating them into
the troubleshooting process, in the event of an error, the affected
location scope is documented in distributed tracing and observabil‐
ity systems, thereby streamlining the troubleshooting process and
promoting efficient problem resolution.

Share-Nothing, Stretch-Nothing
The share-nothing, stretch-nothing principle emphasizes the impor‐
tance of distributing application instances and data across multi‐
ple isolated and independent locations, rather than extending or
stretching them beyond a certain boundary.

This is important because stretching a system can increase the risk
of failure propagation (and even security breaches) by extending

Multi-Active Architectures | 19

fault domains, which is often the case when using traditional
tightly coupled infrastructure-based clusters or other tightly coupled
systems that rely on shared resources, such as stretched storage
volumes.

Expanding failure domains across cloud zones means that a single
failure can cascade and impact multiple zones, potentially resulting
in data loss and increased costs for recovery efforts. Additionally,
stretched clusters can increase the risk of human errors or poorly
executed configuration changes (for example, mistyping a faulty CLI
command or pushing YAML files containing typos or errors) since
any change made will impact all zones, leading to a regional outage.

There is no doubt that deploying clusters in general remains a
fundamental aspect of cloud deployments. However, if a cluster
is created and stretched across multiple zones, it is important to
acknowledge that this cluster becomes a single failure domain. To
maximize reliability, I recommend creating multiple active autono‐
mous clusters across different zones, as shown in Figure 3-2.

Figure 3-2. Multicluster deployments

In addition, Always On architectures mandate out-of-region
deployments to ensure continuous availability and safeguard organ‐
izations from regional failures, providing enhanced reliability and
ensuring that mission-critical services remain available to end users.
This is also particularly beneficial for industries that must comply
with business continuity and data governance regulations requiring
out-of-region locations.

20 | Chapter 3: Always On Guiding Principles

Deployment Archetype
As stated previously, the Always On deployment pattern should
effectively restrict fault domains, provide service parallelism, and
safeguard workloads against both zonal and regional failures.
Additionally, the pattern must ensure zero downtime capabilities
during both planned and unplanned outages, maintaining uninter‐
rupted service and optimal performance.

Table 3-1 showcases some of the patterns that are commonly used
in hyperscaler deployments. Patterns dependent on failover mecha‐
nisms are not deemed Always On compatible since they require
complex and time-consuming recovery procedures that disrupt
users and do not provide true zero downtime capabilities. Therefore,
in this report, we will focus on the Always On globally distributed
pattern to address these shortcomings.

Table 3-1. Deployment archetypes

Reliability patterns Zonal failures
protection

Regional failures
protection

Zero downtime
capable

Single region with multiple zones Yes No No
Dual regions with failover region Yes Yes No
Always On globally distributed Yes Yes Yes

The Always On globally distributed deployment pattern requires
a minimum of three active serving regions, known as the 3-active
model. This configuration ensures continuous service availability by
distributing incoming traffic across all the regions, even during vari‐
ous disruptions, as it allows a location to be de-advertised and taken
offline during unplanned and planned outages while still handling
the anticipated maximum load with the remaining two locations.

As shown in Figure 3-3, each region must have at least two zones to
prevent local zone failures from completely disrupting a region.

Multi-Active Architectures | 21

Figure 3-3. Always On globally distributed deployments

Although each region operates autonomously, their architecture and
configurations are replicated across all three sites. GitOps and con‐
tinuous deployment pipelines ensure consistent deployment and
facilitate automation for rebuilds and infrastructure changes.

With global traffic management constantly monitoring and tracing
the health, performance, and availability of all serving locations,
it can effectively determine the unavailability of an application dur‐
ing an unplanned outage. If a location becomes unreachable, it is
removed from the serving pool. Traffic is promptly steered to other
serving locations, effectively bypassing the outage.

Operationally, the process is similar for planned outages. Operation
teams de-advertise a serving location from the global traffic man‐
agement pool before an application release or cloud maintenance
task without affecting service-level objectives (SLOs) as traffic is
seamlessly redirected to another active serving location until main‐
tenance is complete.

All affected applications are verified before the serving location is
re-advertised into the global traffic management pool. If any issues
or concerns arise, the location remains out of service for problem

22 | Chapter 3: Always On Guiding Principles

determination, resolution, and restoration to a previous functional
state.

As an added advantage, adopting a 3-active model, shown in Fig‐
ure 3-3, often proves to be more cost-effective and efficient than a
2-active approach:

• When utilizing two locations, each location must be provi‐•
sioned at 100% capacity for cloud resources and software licen‐
ses to allow one location to handle the entire load if the other
becomes inoperative, resulting in a 200% investment (100% +
100% = 200%).

• In contrast, using a 3-active model allows for a reduction in•
each location’s capacity to 50%, resulting in an overall capacity
of 150% rather than the 200% found in a 2-active setup, given
that the required capacity is only 100% (50% + 50 % + 50% =
150%).

This reduction in capacity requirement not only lowers the overall
investment but also enhances efficiency by allowing for greater flexi‐
bility in handling disruptions and distributing workload across the
three locations.

As we move forward, I explore the significance of application devel‐
opment patterns in enhancing reliability, working in tandem with
infrastructure and platforms to establish robust systems.

Application Reliability Patterns
I emphasized the significance of distributed deployment models in
reinforcing the Always On architecture. By strategically deploying
multi-active application instances and their dependencies, we can
maintain availability in the face of zonal, regional, and both planned
and unplanned outages. However, our reliability strategy doesn’t
stop there.

It is important to take a step up the stack and consider how the
application itself can contribute to achieving even greater reliability
with modern development patterns. Applications must be designed
and architected to offer reliability by incorporating various design
principles, architectural patterns, and best practices that address the
common challenges of mission-critical services.

Application Reliability Patterns | 23

Cloud-native, microservices, and similar types of network-based
applications manage numerous intertwined dependencies, encom‐
passing a multitude of backend components, API and gRPC calls,
data stores, and message queues. These components can give rise to
a range of faults, from transient glitches to persistent issues, such as
packet loss, network congestion, timeouts, database deadlocks, rate
limiting, load balancing misrouting issues, and erroneous responses,
among others. These can cascade to other critical parts of the system
and cause catastrophic outages.

From an application perspective, it is necessary to embrace the
same design for failure approach discussed earlier and consider
these glitches as part of the overall end-to-end business service,
identifying potential vulnerabilities in the application flow, as shown
in Figure 3-4. This will help developers implement fallback mecha‐
nisms within the application stack that can significantly improve its
reliability and ensure a more robust and antifragile system.

Figure 3-4. Simplified example of an application flow

Similar to the deployment models introduced in the earlier sections,
it is essential for applications to proactively bypass faults, self-heal
when necessary, ensure reliable message delivery and order, and
safeguard data consistency and integrity.

To do that, Always On applications need to incorporate the
following patterns that developers should utilize from modern

24 | Chapter 3: Always On Guiding Principles

cloud-native development frameworks, including but not limited
to Spring, MicroProfile, Quarkus, and specialized fault tolerance
libraries such as Resilience4j, Hystrix, and Polly:

• Fault isolation•
• Loose coupling•
• Flow management and control•
• Health check endpoints and supervision•
• Location awareness•
• Data and transactional consistency•

Let’s dig into each of these in more detail.

Fault Isolation
Fault isolation plays a crucial role in preventing cascading failures
among microservices and other types of API-based and network-
based services. By isolating components, failures in one part of the
system do not spread to other areas. Various techniques can be
employed to achieve fault isolation, such as:

Process boundaries
This isolation technique involves separating components or
microservices into distinct processes, each running within its
own memory space (or runtime). This separation ensures that a
failure in one process does not directly affect others, as they are
independently managed by individual containers or operating
systems.

Circuit breakers
The circuit breaker pattern is designed to prevent cascading
failures by monitoring the health of a dependent service and
temporarily disabling communication with it if it becomes
unresponsive or experiences excessive errors. Once the service
recovers, the circuit breaker resets, and communication is
reestablished.

Bulkheads
Inspired by the design of ships, bulkheads are partitions that
segregate components or services within an application by
isolating distinct functional areas or resources and prevent‐
ing overload and failures in one resource from propagating

Application Reliability Patterns | 25

to others. Examples of bulkheads are thread pool bulkheads,
semaphore bulkheads, and database pool bulkheads.

Loose Coupling
Loose coupling involves creating applications that maintain essen‐
tial functionality even when individual components or services
encounter issues. The goal is to decouple services (making them
loosely coupled) and minimize the impact of failures in the business
and affected users, while ensuring that other users can continue to
access the functioning services without disruption.

In a loosely coupled system, components interact through well-
defined interfaces and protocols, diminishing the chances of one
component’s changes or failures affecting others. This pattern also
simplifies individual component scaling and deployment without
disrupting the entire application. A range of loose coupling tech‐
niques can then be utilized, such as:

Asynchronous communication
This technique refers to allowing components to process and
respond to requests at their own pace without time limitations.
By relaxing temporal constraints, components can handle occa‐
sional slow responses without causing the entire application
to fail. It allows components to continue processing other
tasks without being blocked by delayed responses from other
services.

Event-driven architecture
An event-driven architecture involves components communi‐
cating through queued events (or actionable facts) instead of
direct calls to one another. This approach promotes decoupling
by allowing components to react to ordered events independ‐
ently, reducing the impact of failures on the overall system.

Idempotency
Idempotent operations can be executed multiple times without
causing any side effects or unintended consequences. This
means that services and components can safely retry operations
in case of failure.

26 | Chapter 3: Always On Guiding Principles

Flow Management and Control
Managing flow and overall requests latency can significantly impact
application performance and user experience. Flow control involves
implementing strategies to minimize the response time of an appli‐
cation by reducing delays and managing API and gRPC traffic flow
and timeouts. Developers can leverage the following techniques to
manage the flow of requests or messages in a system:

Bounded queues
Bounded queues help manage the number of requests or mes‐
sages waiting to be processed, preventing an uncontrolled
growth of pending items that could lead to resource exhaustion
or slow response times. By limiting the queue size, systems
can maintain a balance between incoming requests and process‐
ing capacity. This pattern is especially useful when handling
workloads with varying demand or when dealing with compo‐
nents that have different processing capabilities.

Load shedding and throttling
Load shedding and throttling are two techniques used to man‐
age and control traffic in a system. Load shedding involves
deliberately reducing incoming traffic to maintain the stability
and responsiveness of the entire system during periods of high
demand or component failure. On the other hand, throttling
involves limiting the processing rate of traffic by a system or
component, based on properties of individual resources. Unlike
throttling, load shedding proactively avoids overloading the sys‐
tem by limiting requests based on the overall state of the system
rather than individual resource properties.

Timeouts, retries, and backoffs
Timeouts are employed to limit the waiting time for a response
from a dependent service or component. By setting a reasonable
timeout, services can prevent long waits and ensure that slow
or unresponsive components do not cause the entire application
to stall. Similarly, an exponential backoff strategy is used in con‐
junction with retries to introduce a delay between retry attempts
to alleviate the risk of overloading a system or service with
repeated requests by giving it time to recover from transient
issues.

Application Reliability Patterns | 27

Fail-fast and fallback
The fail-fast and fallback approach involves detecting errors
or failures early in the process and transparently falling back
the operation immediately to an alternative path, rather than
attempting to proceed in a degraded system state. This tech‐
nique helps reduce latency by preventing wasted time and
resources on processing that is likely to fail.

Health Check Endpoints and Supervision
Health check endpoints refers to the supervision, monitoring, and
detection of the health and status of the desired end-to-end SLO
and the overall behavior of the business service. This is essential
to enable gatekeeping mechanisms and traffic management between
application interfaces and endpoints and take appropriate actions as
needed.

Health check endpoints typically respond with an HTTP status code
and, optionally, a JSON or XML payload containing more detailed
information about the service’s health. The primary purpose of
health check endpoints is to enable external supervising systems
and orchestrators (such as global traffic managers, load balancer,
circuit breakers, and synthetic testing and monitoring systems) to
make informed decisions about routing traffic and scaling instances.

Common types of health checks in Always On architectures include:

Liveness and readiness checks
These tests are designed to indicate whether a service or com‐
ponent is up and running. If a liveness probe fails, it signals
that the instance has crashed or is experiencing a failure, and
the orchestrator (such as a Kubernetes scheduler) may decide
to restart the instance. A readiness probe, on the other hand,
is used to determine if a service is fully ready to receive and
process incoming requests. This type of health check can be
useful during runtime and JVM startups, when a service may be
running but not yet fully initialized and temporarily unable to
handle requests.

Simulated transactional tests
These synthetic tests simulate complex user interactions or
multistep processes within an application, API, or website, such
as completing a purchase, creating an account, or filling out a
form. Transactional checks can be combined with simulation

28 | Chapter 3: Always On Guiding Principles

originating from browser-based and mobile app-based testing
execution environments. These tests measure the time it takes
for an API or a process to respond to a request. Response
time monitoring helps identify potential performance bottle‐
necks and ensure that the system meets specified performance
requirements.

Location Awareness
Location awareness refers to the ability of a service to determine
its geographical and logical location scope or even the network
proximity of its components, resources, data, and users and make
informed decisions based on this information. Examples of location-
awareness attributes could be servers, server racks, data centers,
cloud zones, cloud regions, and cluster or geographical origination
(a method commonly used for data sharding). Location information
can be used to optimize various aspects of the application, such
as VM or worker node affinity/anti-affinity rules, read/write bias
(CQRS pattern), replica placement, unique identifiers generation,
leadership election and balancing, and even go as far as deciding on
SQL primary keys or manipulating explicit INSERT INTO statements.

Location awareness also helps optimize the strategic placement of
data replicas across different geographical locations to reduce the
risk of data loss while allowing applications to process data closer to
where it is generated or consumed.

An additional advantage of location awareness is that it enhances
overall system security by directing traffic to suitable geographic
locations, ensuring compliance with regional security and data res‐
idency policies, which is often crucial when maintaining mission-
critical services.

Data and Transactional Consistency
Preserving data consistency and transactional integrity by itself can
be a complex task. Making sure data stays consistent is key and can
be pretty challenging to get right, especially when applications have
to deal with accessing, writing, and processing data from several
active locations simultaneously. This complexity necessitates careful
consideration and thorough analysis by architects and developers to
fulfill possible (and acceptable) consistency level and parallel data
access requirements of an Always On application.

Application Reliability Patterns | 29

4 “CAP Theorem,” Wikipedia, last modified April 27, 2023.
5 Robson A. Campêlo et al., “A Brief Survey on Replica Consistency in Cloud Environ‐

ments,” Springer Nature, February 21, 2020.

There are various data consistency patterns that go beyond the
commonly known synchronous (strong consistency), asynchronous
(eventual consistency), and semisynchronous replication patterns.
These are employed to address the trade-offs highlighted by the
CAP theorem,4 which states that a distributed system cannot simul‐
taneously offer consistency, availability, and partition tolerance:

Replication patterns
Different data replication patterns can be applied to cater to
specific needs of an application in terms of availability, consis‐
tency, and latency. Notable patterns include primary/secondary,
multimaster, peer-to-peer, sharding, and quorum consensus
with leader election. Numerous NewSQL solutions (AWS Dyna‐
moDB, Google Spanner, Microsoft Azure Cosmos DB, Cock‐
roachDB, MongoDB, Apache Cassandra, etc.) and modernized
traditional DBMS implementations (Percona Server for MySQL,
Apache ShardingSphere, Oracle Grid, etc.) incorporate these
patterns. Other out-of-band change data capture (CDC) tech‐
nologies such as IBM Q Replication, Oracle GoldenGate,
Debezium and even Kafka help traditional database systems
offer similar capabilities.

Tunable consistency
Tunable data consistency allows architects to make informed
decisions about the trade-offs between consistency and latency
by providing the ability to tune different consistency levels5 that
can be chosen based on the nature of the operation (read or
write), application, and even users. For example, databases like
Cosmos DB and Cassandra offer multiple consistency levels
that can be configured on a per-operation basis such as strong,
session-based, consistent-prefix, etc. Additionally, streaming
platforms like Kafka provide multiple delivery guarantees such
as at least once and exactly once.

Conflict resolution
In multimaster (read/write anywhere) or peer-to-peer replica‐
tion scenarios, conflicts may arise when multiple nodes update
the same data concurrently. Conflict resolution strategies like

30 | Chapter 3: Always On Guiding Principles

https://oreil.ly/LM2Xb
https://oreil.ly/oJNMi

last-write-wins, log and notify, merge, version vectors, CRDTs,
or other application-specific logic can be employed to resolve
these conflicts and maintain data integrity and consistency.
Conflict resolution and reconciliation are inevitable parts of dis‐
tributed systems, and they should not be intimidating. Instead,
they should be viewed as necessary mechanisms to handle
inconsistencies that arise in the system.

Distributed transaction protocols
Transactions ensure that all operations within a transaction are
either fully completed or fully rolled back, maintaining the
integrity of the data. To achieve this, developers can leverage
two-phase commits (2PC), which ensures strong messaging
consistency across multiple resources (e.g., databases, message
queues) and Saga transactions that let applications perform a
sequence of local transactions, each executed by a different
resource and executing compensating transactions in case one
fails to undo the effects of the preceding successful operation,
effectively rolling back the entire Saga.

Caching
Caching assists applications to maintain responsiveness and
availability even during periods of instability and transient
issues by displaying stale but relevant data while simultaneously
accepting modifications that will later be synchronized with
primary data stores. Read-through, write-through, and write-
back caching strategies must be evaluated, while tools like AWS
DynamoDB Accelerator (DAX) and Red Hat Data Grid enable
developers to effortlessly integrate these caching mechanisms
into their applications.

Global clocks and order
The order of messages is crucial for effective messaging and
queuing systems, requiring accurate and consistent timestamp‐
ing regardless of sender and receiver locations. Services such
as AWS Time Sync Service and GCP TrueTime API utilize
technologies such as redundant satellite-connected servers and
GPS-aware atomic clocks to provide a stable UTC reference for
high accuracy and reliability in timekeeping.

Naturally, latency remains the proverbial elephant in the room. It’s
the silent killer that can bring even the most well-designed system
to its knees. This is why taking a thoughtful business perspective

Application Reliability Patterns | 31

approach to data consistency design early on is important to opti‐
mize the specific needs of the application.

The foundational architectures and guiding principles that we dis‐
cussed above are essential for laying the groundwork to achieve an
Always On state, but the technology aspect is only one piece of
the puzzle. In the next chapter, we will explore how an Always On
program’s success also depends on a distinctive governance model,
organizational restructuring, and a transformative cultural shift.

32 | Chapter 3: Always On Guiding Principles

CHAPTER 4

Culture, Governance, and
Organization

As previously discussed, striving to be Always On demands strategic
decision making from the highest levels of an organization. This
involves adopting a modern and unique approach of governing and
a new method of operations.

Mature CIO organizations establish business service classification
review boards to determine the appropriate service tier and the end-
to-end SLO required for a specific mission-critical business service.
They consider factors such as service criticality, continuous reliabil‐
ity expectations, development time, operational expenses, and the
financial consequences of potential outages.

When organizations discuss promoting the need for reliable serv‐
ices, they often encounter doubts or inquiries about the feasibility
of achieving it from both business and technical perspectives. It is
vital, then, to foster a culture that embraces continuous ops, or as
it is known by its newer name, site reliability engineering (SRE),
a framework that brings together business, architects, application
owners, development, and operations teams.

Site reliability engineers evaluate and approve proposals for imple‐
menting Always On for a nominated business service after the
need for Always On has been socialized organization-wide. They
conduct a fit analysis to ensure alignment with existing Always
On patterns and guiding principles, accelerating the delivery of
customer-focused reliable services and improving decision making.

33

In this chapter, I briefly describe SRE and chaos engineering, con‐
cepts that are instrumental not only in operating mission-critical
services but also in testing, validating, and building confidence in
their reliability.

Site Reliability Engineering
Site reliability engineering, pioneered by Google, is an engineering
discipline that focuses on applying software engineering principles
and practices to operations. In an Always On environment, SREs are
tasked with establishing and adhering to end-to-end SLOs, which
often entails striking a balance between development velocity (such
as new deployments, changes, and new application features) and
reliability, all while maintaining a customer-centric mindset. SREs
implement automation, observability, testing, and incident response
strategies to ensure that applications meet these objectives and con‐
tinuously improve over time.

The journey toward adopting SRE starts with a cultural shift in the
organization, emphasizing the importance of a blameless postmor‐
tem culture. This approach focuses on learning from incidents and
improving systems rather than assigning blame. By fostering collab‐
oration among development, operations, and other crossfunctional
teams, it becomes easier to dismantle silos and align everyone’s
efforts toward common objectives. Ultimately, an SRE culture culti‐
vates an approach of continuous improvement, enabling teams to
proactively detect and address potential reliability concerns at an
early stage.

When managing Always On services, SRE teams must have a com‐
prehensive understanding of both the functioning and potential
failure points of the end-to-end application flow and underlying
infrastructure. This means that the SRE team responsible for life-
cycle operations should be actively involved in the design, imple‐
mentation, testing, and validation stages. This involvement ensures
prompt feedback and corrective measures if the design fails to meet
all the guiding principles for Always On.

SRE is a wide topic. I recommend exploring the literature that Goo‐
gle regularly maintains for a deeper understanding. However, for the
scope of this report, I will focus on the following specific areas:

34 | Chapter 4: Culture, Governance, and Organization

https://sre.google

1 Ingo Averdunk, “Build to Manage,” IBM Cloud Garage and Solution Engineering
(GSE), December 23, 2019.

• Build to manage•
• Error budgets•
• Observability and proactive service management•
• Declarative and continuous deployment•
• Graceful location scope–based updates•

Let’s explore each of these in more detail.

Build to Manage
Build to manage refers to the practice of designing and developing
systems with manageability, observability, and reliability as integral
components from the very beginning. It encompasses a collection of
manageability features incorporated within the application as part of
the development and release process.

The build-to-manage approach deserves an extensive and detailed
examination. While I will highlight some of its crucial aspects, it is
necessary to understand its related concepts and strategies:1

Log format and catalog
Adhering to the practice of composing well-structured log mes‐
sages is crucial in order to capture pertinent and consistent
information during runtime. Logs should effectively convey the
who, when, where, and what, along with a severity ranking and
a well-defined timestamp.

Deployment correlation
By utilizing deployment markers, it is possible to indicate
deployment activities on the same chart or timeline that dis‐
plays reliability metrics. This approach enables SREs to visually
correlate reliability issues with recent deployment of a new ver‐
sion, making it easier to identify the cause of any issues.

Runbooks and knowledge base
A knowledge base serves as a central repository for storing
any information and runbooks relevant to troubleshooting or
resolving issues related to an incident. Entries may include
troubleshooting runbooks and steps taken by SREs during a

Site Reliability Engineering | 35

https://oreil.ly/GMb1L

resolution process. However, runbooks must be automated and
executed by first responders, rather than simply documentation.

Concurrent versioning
Multi-instances deployments enable running distinct versions
of an application in separate location scopes, facilitating canary
testing and collaborative database schema changes. For this to
safely work, the use of feature flags can be leveraged, a techni‐
que that allows SREs and developers to turn specific features of
an application on or off without changing the codebase.

Error Budgets
SRE incorporates the concept of error budgets to balance the goals
of frequent, agile, and rapid development and maintain reliability.
Error budgets provide a quantitative measure to manage risk and
make informed decisions about stability, feature development, and
deployment velocity.

An error budget is derived from the end-to-end SLO. For example,
if a service has an end-to-end SLO of 99.99%, it means that it has a
0.01% allowable downtime, which is the error budget. This is then
used to drive decisions and trade-offs between different teams in
an organization. For example, if a service is well within its error
budget, the development team may decide to push new features
more aggressively. Alternatively, if the service is approaching or
exceeding its error budget, the development team might slow down
new releases and focus on improving stability and reliability instead.

By utilizing error budgets, SREs take responsibility (and accounta‐
bility) for upholding the various SLOs in place.

Observability and Proactive Service Management
Observability is a key aspect of managing Always On applications,
as it provides the necessary visibility into application behavior and
performance. Observability practices include collecting and analyz‐
ing logs, metrics, and transactional traces from applications, infra‐
structure components, and transactions to identify trends, detect
anomalies, and uncover the root causes of issues.

Traditionally, operations may only monitor infrastructure services
and respond to failures, but SREs are paranoid. They monitor all
aspects of a business service’s reliability and performance, both

36 | Chapter 4: Culture, Governance, and Organization

internally and externally. By monitoring trending and correlating
every aspect of the business service, abnormalities can be detected
before they lead to incidents and problems. This approach repre‐
sents a significant shift from reactive to proactive service manage‐
ment. If a user or business client reports an issue that the team is
unaware of, SREs consider their mission a failure.

Declarative and Continuous Deployment
GitOps is a modern approach to managing infrastructure and appli‐
cation deployments using Git as the single source of truth. By defin‐
ing infrastructure and deployment configurations declaratively as
code using tools like Crossplane, Terraform, and Ansible, stored
in a version-controlled repository, GitOps enables automated, self-
documented, and auditable continuous workload deployment.

GitOps empowers SREs to streamline deployments by writing code
once and reusing it for multiple deployments. Deploying a new
application or updating an existing one simply involves updating
the repository. This approach helps ensure consistency across multi-
active environments and reduces the risk of human error while
performing changes across location scopes.

Graceful Location Scope–Based Updates
Location scope–based updates, or “one region at a time,” involve
the gradual execution of planned changes or application releases by
SREs to ensure zero downtime, similar to blue-green and canary
deployment methods.

Before releasing an application or performing a maintenance job,
SREs de-advertise a location scope (such as a cloud region) from
the global traffic management pool to gracefully shutdown without
causing errors to clients. Sometimes, SREs must also know the order
of the components to shut down first, by reverse shutting down
the dependency injection of a component, which allows them to
work on their tasks without impacting SLOs and losing in-transit
processes and data.

Once maintenance is completed or a new version of the application
has been successfully pushed, all affected applications are verified
and tested before the serving location is reintegrated into the global
traffic management pool. These steps are replicated to other regions,
one at a time, effectively allowing organizations to consistently

Site Reliability Engineering | 37

deploy new application features and perform maintenance tasks
during working hours and peak times.

To ensure the availability of a business service, SREs need confidence
in its reliability. In the next section I discuss chaos engineering, a
practice that is essential to test and validate end-to-end SLOs.

Chaos Engineering
Chaos engineering is a proactive and principled practice of conduct‐
ing reliability experiments on a business service to strengthen its
ability to withstand unpredictable and unforeseen conditions and to
uncover issues that might not be detected during preproduction test‐
ing. This is achieved by intentionally injecting faults and errors into
a component to observe how it behaves under adverse conditions.
Examples of failure injections include node/pod failure, packet drops,
cloud zone and region failures, latency, I/O delays, process kill, disk
fill, certificate expiry, and clock changes, among others.

Contrary to what the name might imply, these experiments are
carefully designed and orchestrated and follow a rigid method, as
shown in Figure 4-1. The process begins with understanding the
system end to end, identifying potential weaknesses, followed by
formulating a hypothesis based on these observations.

Figure 4-1. Chaos engineering methodology

38 | Chapter 4: Culture, Governance, and Organization

Subsequently, a tailored experiment is planned and executed against
the system. As previously discussed, SREs must have a comprehen‐
sive understanding of the entire technology stack and of the end-to-
end application flow. This will help them to effectively experiment
on all components.

It is important however, to begin simulating realistic scenarios by
injecting likely failures and bugs and then steadily escalating com‐
plexity. For example, if latency has been an issue in the past, SREs
can intentionally introduce faults that cause latency to occur. The
results of the experiment are then measured and compared with
the hypothesis to either confirm or refute it. By doing so, they can
identify immediate weaknesses in the system and develop strategies
to mitigate or eliminate them before focusing on more complex
failure scenarios.

It’s essential that impact is contained to avoid cascading failures and
to minimize blast radiuses. This can be achieved by targeting only
a select group of services, possibly in a cloud region that’s been
de-advertised by the SREs, or by ensuring that dependent services
are gracefully disconnected. The use of feature flags and canary
releases can also be helpful to limit the impact of the experiment to
only a small group of users. It is also important to have workable
rollback plans in place in case an experiment goes wrong if deemed
necessary.

These experiments are typically conducted during designated “game
days” to assess a service’s behavior in a controlled setting. As the
organization matures and becomes more experienced, experiments
should be conducted gradually in production to ensure the applica‐
tion’s robustness when it matters. Experiments can then be automa‐
ted and continuously executed or as part of continuous delivery
pipelines.

SREs can use chaos engineering tools available by cloud provid‐
ers, including AWS Fault Injection Simulator and Azure Chaos
Studio to experiment on cloud-native managed services. In addi‐
tion, cloud-agnostic tools like Gremlin, Reliably, Chaos Toolkit, and
LitmusChaos can perform more intricate experiments that involve
multiple clouds and platforms.

Observability tools must be well configured to learn from relevant
results and insights, enabling architectural improvement, issuing
bug reports, or submitting feature requests. To that end, SREs must

Chaos Engineering | 39

maintain open communication throughout the process, fostering
a culture that appreciates the benefits of introducing controlled,
short-term risks to enhance overall long-term reliability.

By simulating experiments and identifying issues proactively, organ‐
izations can identify and remediate architectural weaknesses, thus
improving service reliability and stability early on. This will in turn
provide confidence and evidence that their mission-critical services
are meeting their end-to-end SLOs.

40 | Chapter 4: Culture, Governance, and Organization

Closing Words

Achieving Always On is an attainable objective that often involves
a lengthy journey. An entire organization must fully embrace this
journey and accept the necessary cultural changes to their business.
A holistic approach is required, encompassing people, processes,
and technology, and it cannot be achieved by changing only one of
the three.

As an iterative process, the Always On transformation is marked
by a continuous cycle of planning, execution, evaluation, and
improvement. To achieve this, organizations need to comprehen‐
sively address all aspects of a client’s journey and assess reliability
and weaknesses across the end-to-end architecture. This includes
embracing a designing-for-failure mindset not only for the infra‐
structure, platforms, and services but also for the applications
themselves.

Transforming operations and testing methodologies is also a crucial
aspect of managing mission-critical services by adopting site relia‐
bility engineering and chaos engineering principles. By focusing
on these areas and continuously iterating and improving based on
feedback, organizations can proactively identify and address any
potential issues, ultimately enhancing the overall reliability of their
business services.

By adhering to the guiding principles described in this report,
organizations can lay a robust foundation for designing, developing,
deploying, and managing mission-critical workloads in the cloud
and succeed at adopting an Always On strategy, ensuring a seamless
and reliable experience for their clients throughout their journey.

Closing Words | 41

About the Author
Haytham Elkhoja is a principal architect at Kyndryl, office of the
CTO. He led the incubation of Always On as a global consultancy
and established the Chaos Engineering Guild at IBM and then
at Kyndryl. Haytham leads cloud reliability transformation engage‐
ments around the world, focusing on industries such as banking and
finance, energy, defense, and transportation.

Haytham is an avid golfer and snowboarder.

	Cover
	Kyndryl
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Drivers and Considerations
	Failures, Outages, and Disasters
	Resiliency Versus Reliability
	Always On Mission-Critical Services

	Chapter 2. The Always On Strategy
	Cloud SLAs Are Often Misunderstood
	Service-Level Objectives Versus Recovery-Time Objectives
	End-to-End Service-Level Objectives
	Achieving 99.999% End-to-End SLOs in the Cloud

	Chapter 3. Always On Guiding Principles
	Multi-Active Architectures
	Location Scopes
	Traffic Management and Service Parallelism
	Transactional Swimlanes and Location Affinity
	Share-Nothing, Stretch-Nothing
	Deployment Archetype

	Application Reliability Patterns
	Fault Isolation
	Loose Coupling
	Flow Management and Control
	Health Check Endpoints and Supervision
	Location Awareness
	Data and Transactional Consistency

	Chapter 4. Culture, Governance, and Organization
	Site Reliability Engineering
	Build to Manage
	Error Budgets
	Observability and Proactive Service Management
	Declarative and Continuous Deployment
	Graceful Location Scope–Based Updates

	Chaos Engineering

	Closing Words
	About the Author

